
A Linear-Time, Optimization-Free, and Edge
Device-Compatible Hypervector Encoding

Sercan Aygun∗, M. Hassan Najafi∗, and Mohsen Imani†

sercan.aygun@louisiana.edu, najafi@louisiana.edu, m.imani@uci.edu
∗University of Louisiana at Lafayette, †University of California Irvine

Abstract—Hyperdimensional computing (HDC) offers a single-
pass learning system by imitating the brain-like signal structure.
HDC data structure is in random hypervector format for better
orthogonality. Similarly, in bit-stream processing – aka stochastic
computing– systems, low-discrepancy (LD) sequences are used
for the efficient generation of uncorrelated bit-streams. However,
LD-based hypervector generation has never been investigated
before. This work studies the utilization of LD Sobol sequences
as a promising alternative for encoding hypervectors. The new
encoding technique achieves highly-accurate classification with a
single-time training step without needing to iterate repeatedly over
random rounds. The accuracy evaluations in an embedded envi-
ronment exhibit a classification rate improvement of up to 9.79%
compared to the conventional random hypervector encoding.

I. INTRODUCTION

Hyperdimensional computing (HDC) [1] is an emerging
computing methodology that mimics brain-like learning with
highly efficient and noise-tolerant computation. Since the prim-
itive operations in HDC are in the order of logic gates and
depend on hardware-light solutions such as XORing, shifting,
dot product, and population count, HDC is suggested as a
promising alternative to complex systems such as deep learning
in resource-limited environments. In HDC systems, the primitive
data unit is a vector consisting of +1 (logic-1 in memory)
and −1 (logic-0 in memory) values. Up to 10, 000 bit long
hypervectors are used when encoding data (Fig. 1 a). During
training, HDC superimposes the encoding of signal values to
create a composite representation of a phenomenon of interest

known as a “class (C) hypervector” (Fig. 1 b). During the
inference, the nearest similarity (δ) search returns the class of
the encoded query hypervector (Fig. 1 c).

In HDC systems with non-continuous data, hypervectors need
to be orthogonal to each other. Randomly generated vectors
are nearly-orthogonal. Generally, pseudo-random methods are
utilized to provide this randomness. However, this directly
affects the accuracy and may require hundreds to thousands
of rounds to determine the best random vectors. Hypervector
optimization may not always be possible and can affect the
performance if the training phase is performed on edge devices.
This work proposes a simple vector encoding approach with
O(D) complexity (D is the vector size) without using ran-
dom functions or vector optimization methods. The proposed
technique uses Sobol sequences [2] for high-quality hypervector
encoding. The new encoding approach is lightweight and does
not require an exhaustive search to find the best-performing
vectors, yielding efficient training on edge devices.

The basic operations in HDC are multiplication (⊕: logical
XOR), addition (Σ: bitwise population count), and permutation
(Π: shifting). These operations are invertible and have linear
time complexity. HDC systems first encode data with a proper
technique according to the classification or cognitive tasks.
Spatial, temporal, and histogram-based encoding techniques are
used in the literature [3]. Encoders are divided into (i) record-
based and (ii) n-gram-based approaches [4], [5]. The record-
based approaches assign level hypervectors (L, e.g., pixel
intensity values) and position hypervectors (P , e.g., randomly
generated vectors for pixel positions). Feature positions on data

``This study was prepared for the DATE LBR.``

B çalı a DATE LBR içi ha ı la ı ı

``Este estudio fue preparado para el DATE LBR.``

E
n

co
d

in
g

S
in

g
le

-P
a

ss

T
ra

in
in

g

Le e hi e e ce
Train Data

Test Data

C1D … C12 C11

C2D … C22 C21

C3D … C32 C31

h1D … h12 h11

Similarity

δ1

δ2

δ3

Trained Model

ⓐ

ⓑ

Encoded Query
h

Fig. 1. Overview of an HDC system: encoding, training, and similarity check.

are encoded via P s that are orthogonal to each other. On
the contrary, level hypervectors are expected to have correla-
tions between neighbors. The final hypervector is denoted as
H = Σ

N

i=1
(Li ⊕P i), where N is the feature size. The second

category utilizes n-gram-based statistics like those in natural
language processing systems. These encoders use rotationally
permuted hypervectors, which are orthogonal to each other. The
final hypervector is H = L1 ⊕ πL2 ⊕ π

N−1
LN , where π

n

denotes the n-times rotationally permuted L. All samples in the
training dataset are evaluated for H, and each contributes to the
corresponding class hypervector, which is the trained model of
the overall system. During the inference, the test data is encoded
(h), and the similarity check is performed between each test
query and the class hypervector. In our encoding scheme with
Sobol sequences, we utilize the n-gram-based approach and test
the language classification problem [6].

II. QUASI-RANDOM HYPERVECTORS FOR HDC

Recently, quasi-random Sobol sequences have been used to
improve the performance of stochastic computing (SC) systems
by generating fast-converging LD bit-streams [2]. Sobol-based
bit-stream generators also come with a lightweight hardware
design [7]. An analogy from bit-streams of SC to hypervectors
of HDC, this work utilizes Sobol sequences in vector encoding
of HDC systems. Any readily available Sobol sequence (e.g.,
in MATLAB via sobolset() point set) with a D dimension
(SD ∈ [0, 1]) can be considered an array with pre-allocated
quasi-random numbers. For each ith hypervector position, S

is compared with a threshold value (t). If t > Si, the vector
value at the ith position is +1; otherwise, it is −1. In con-
ventional HDC systems with pseudo-random nearly orthogonal
vectors [1], t is generally 0.5. Fig. 2-I- a depicts an example of
hypervector generation with MATLAB’s first Sobol sequence.

After encoding hypervectors, the next step is training

(Fig. 2-I- b). Considering the letter processing example [6],
every n-character block in the training dataset is subject to mul-
tiplication (XOR), permutation (shifting), and cumulative addi-
tion (popcount) over previously encoded hypervectors (uniquely
assigned to each letter). The accumulated values (Acc) are bina-
rized at each vector position using the Sign function. The class
hypervector of each language is obtained after a complete scan
of the dataset for that class. For test set classification accuracy,
the text hypervector obtained for each query is compared with
the class hypervector (Fig. 2-I- c). This study uses cosine
similarity for this comparison.

2023 Design, Automation & Test in Europe Conference (DATE 2023) – Late Breaking Results

978-3-9819263-7-8/DATE23/© 2023 EDAA

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 12,2023 at 16:35:15 UTC from IEEE Xplore. Restrictions apply.

Acc Acc Acc Acc

Sign Sign Sign Sign

D-1D+1 -1 +1 -1 +1 -1

1D

H
1

Letter 1 Hypervector…

Letter 1 Hypervector

H
1

H
n

Letter n Hypervector

×
×
n-gram Hypervector

Acc Acc Acc Acc Acc Acc Acc

Sign Sign Sign Sign Sign Sign Sign

Text Hypervector - Train

…

E
n

co
d

in
g

T
ra

in
in

g

S
im

ila
rity

ⓐ

ⓑ

Language Class Hypervector

Text Hypervector- Test

Language Class Hypervector

0, 1/2, 1/4, 3/4, 1/8, 5/8, 3/8, …
LD Sobol Sequence (𝐒)

H
n

…

Letter n Hypervector

Comparing with

threshold

E
n

co
d

in
g

1. Random

Method

S
im

il
a

ri
ty

2. Deterministic

Method

𝑶 > α𝐷
𝑶 𝐷 S

im
il

a
ri

ty

T
ra

in
in

g

E
n

co
d

in
g

T
ra

in
in

g

ⓐ ⓑ

𝑰 𝑰𝑰-Training Dataset

-Testing Dataset

-Sobol Seq.

Point Set

- 700 MHz ARM processor

Single core, 32-bit

- 512 MB RAM

𝐂h
cosine sim(h ,𝐂) = δ

t=0.5

Fig. 2. A new encoding in an n-gram-based HDC system illustrating letter processing: I - New encoding, conventional training, and similarity check in the
inference. II - Deployment of the proposed approach.

III. DESIGN EVALUATION

Fig. 2-II illustrates deploying an HDC system to an ARM
processor for training and inference to prove edge device
compatibility. A 700 MHz, 32-bit, single-core ARM processor
runs the HDC system implemented in C language. The training
and testing data are read from an SD card. We evaluate
two encoding methods: 1) the conventional random approach
and 2) the deterministic approach based on Sobol sequences.
For optimization, the random method generates different letter
hypervectors in rounds of α times, consuming a runtime of
O(>αD) complexity. The random method dynamically creates
data with a built-in C language-based rand function. On the
other hand, the Sobol sequences are pre-generated, stored in,
and read from memory.

We evaluate the accuracy and speed of the two approaches.
We use the 21-class European languages dataset [8] to train the
HDC system and the Europarl Parallel Corpus dataset [9] for the
inference. The selected n-gram was four decided by iterating
over n ∈ {2, 3, 4, 5} for its outperformance. Table I shows
the classification accuracy of the two encoding approaches. For
the random approach, α is selected as 1:1:1000 iteratively, and
the average classification accuracy is reported over 1, 000 inde-
pendent runs. For this approach, we also report the minimum
and maximum accuracy values. As can be seen in Table I,
the proposed encoding outperforms the conventional random
approach by bringing better-uncorrelated hypervectors for all
D sizes. The best accuracy values are achieved with the pro-
posed encoding. Compared to the state-of-the-art HDC language
classification [6] (D = 10, 000, n = 4, accuracy = 97.1%),
the Sobol-based approach improves the classification rate by
0.75% when D = 8, 192.

Table I also presents the performance (i.e., run-time and
memory usage) results. Training on the edge device was per-
formed with hypervectors of length D = 8, 192. Encoding
methods were tested independently. Runtime comparison was
performed for single-time hypervector assignment for a fair
comparison (α = 1 for the random approach and Sobol-based
encoding always works with a single iteration). As can be seen,
the proposed encoding achieves a better runtime. It should
be noted that the random method needs to be run iteratively
to achieve comparable accuracy with the proposed encoding.
Therefore, even though the random numbers are pre-stored
like in Sobol (for better runtime), multiple runs are required
for better orthogonality and so higher accuracy. Moreover, if
new symbols are added to the HDC system, new hypervector
generations need further optimizations. The proposed encoding,
however, loads and uses only an additional Sobol sequence, thus
providing a dynamic architecture.

IV. CONCLUSIONS

This study proposes an encoding method that alleviates
the training step in HDC systems. Without utilizing any pre-

TABLE I
ACCURACY AND PERFORMANCE RESULTS

Accuracy
D Encoding Minimum Average Maximum

256
Random 67.36% 69.24% 71.70%

Sobol 79.03%

512
Random 82.32% 83.03% 83.83%

Sobol 89.47%

1, 024
Random 90.27% 91.15% 91.51%

Sobol 93.78%

2, 048
Random 94.73% 95.14% 95.40%

Sobol 96.31%

4, 096
Random 96.68% 96.88% 97.09%

Sobol 97.05%

8, 192
Random 97.47% 97.68% 97.87%

Sobol 97.85%

Performance
D Encoding Runtime Memory

8, 192
Random 1,068.3 sec 18.3 KB

Sobol 687.4 sec 17.8 KB

optimization or exhaustive search for the best-performing hy-
pervectors, Sobol-based encoding yields promising accuracy
and performance results. Considering the recent efforts on in-
memory computing-based HDC systems, deployment of full
training into emerging platforms is challenging. Utilizing a
single-read operation for hypervector encoding, as proposed in
this work, shows promising results for developing fast and edge-
compatible HDC systems.

ACKNOWLEDGMENTS

This work was supported in part by National Science Foun-
dation (NSF) grants #2127780 and #2019511, SRC Global
Research Collaboration, AIHW and HW Security, Department
of the Navy, Office of Naval Research, grant #N00014-21-1-
2225 and #N00014-22-1-2067, Air Force Office of Scientific
Research, grant #22RT0060, the Louisiana Board of Regents
Support Fund #LEQSF(2020-23)-RD-A-26, and generous gifts
from Cisco, Xilinx, and Nvidia.

REFERENCES

[1] P. Kanerva. Hyperdimensional computing: An introduction to computing in
distributed representation with high-dimensional random vectors. Cognitive
Computation, 1(2):139–159, 2009.

[2] S. Liu and J. Han. Energy efficient stochastic computing with sobol
sequences. In 2017 DATE, pp. 650–653, 2017.

[3] A. Rahimi et al. Efficient biosignal processing using hyperdimensional
computing: Network templates for combined learning and classification of
exg signals. Proceedings of the IEEE, 107(1):123–143, 2019.

[4] L. Ge and K. K. Parhi. Classification using hyperdimensional computing:
A review. IEEE Circ. and Syst. Mag., 20(2):30–47, 2020.

[5] Y. Yao et al. Fast sar image recognition via hyperdimensional computing
using monogenic mapping. IEEE Geo. and Rem. Sens. Let., 19:1–5, 2022.

[6] A. Rahimi et al. A robust and energy-efficient classifier using brain-inspired
hyperdimensional computing. pp. 64–69, 2016.

[7] M. H. Najafi et al. Deterministic methods for stochastic computing using
low-discrepancy sequences. In 2018 ICCAD, pp. 1–8, 2018.

[8] U. Quasthoff et al. Corpus portal for search in monolingual corpora. In
LREC, 2006.

[9] P. Koehn. Europarl. http://www.statmt.org/europarl/, 2005.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on June 12,2023 at 16:35:15 UTC from IEEE Xplore. Restrictions apply.

